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Abstract. High-speed smooth and accurate visual tracking of objects in
arbitrary, unstructured environments is essential for robotics and human
motion analysis. However, building a system that can adapt to arbitrary
objects and a wide range of lighting conditions is a challenging problem,
especially if hard real-time constraints apply like in robotics scenarios.
In this work, we introduce a method for learning a discriminative object
tracking system based on the recent structured regression framework for
object localization. Using a kernel function that allows fast evaluation
on the GPU, the resulting system can process video streams at speed of
100 frames per second or more.
Consecutive frames in high speed video sequences are typically very re-
dundant, and for training an object detection system, it is sufficient to
have training labels from only a subset of all images. We propose an
active learning method that select training examples in a data-driven
way, thereby minimizing the required number of training labeling. Ex-
periments on realistic data show that the active learning is superior to
previously used methods for dataset subsampling for this task.

1 Introduction

Smooth high-speed tracking of arbitrary visual objects is essential in industrial
automation, in many robot applications, e.g. visual servoing, high-speed ball
games, and manipulation of dynamic objects in complex scenarios, as well as
in a variety of other topics ranging from human motion analysis to automatic
microscope operation. Due to the importance of the problem, many different
solutions have been proposed both in academic research projects as well as for
industrial applications.

Despite great progress in computer vision research, most solutions used in
industry still rely upon controlled environmental conditions that can only be
achieved on factory floors. Commercially available tracking solutions typically
use active solutions such as pulsed LED’s targtes or IR-reflecting markers. Ba-
sic research projects, on the other hand, have concentrated either on controlled
setups with dark backgrounds, on complex marker patterns, or on systems that
do not achieve pixel-exact tracking [1, 2]. Overall, tracking objects in semi-
controlled, human inhabited environments at high frame rates with off-the-shelf
hardware is still an open research problem. However, such components are es-
sential in order to bring robots into human inhabited environments.
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1.1 Object Tracking in Image Sequences

Most computer vision tracking technique, in particular Kalman filters [3] and
particle filters [4], consists of two main components: a detection step that esti-
mates an object’s position in each individual frame and a motion model that
performs temporal smoothing of the object trajectory, e.g . to suppress outliers.
In probabilistic terms, the parts usually reflect a likelihood term and a prior.

In this work, we concentrate on the detection step: given an image from
a sequence, we want to identify the location of a freely moving object with
high accuracy and high speed. For maximal robustness, we avoid search space
reductions, such as a region of interest, to be able to recover from misdetections
without delay. For use in an interactive robotics system, the detections from two
independent cameras are integrated in a Markov chain model, and 3D object
trajectories are recovered, but these steps are beyond the scope of this paper.

1.2 Object Localization in Single Frames

To formalize the problem of object detection, or localization, we first introduce
some notation. We treat images and object positions as random variables, de-
noting the image (the observed quantity) by x, and the position of the object
(the unknown quantity) by y. Object localization, i.e. the task of predicting the
object position from the image data, can be expressed as a localization function

f : X → Y, (1)

where X is the space of all images and Y is the space of possible object locations.
For simplicity, we only treat the case where the output is parameterized by the
object’s center point in pixel coordinates, and where exactly one object location
has to be predicted. Generalization to the possibility of predicting “no object”,
or multiple object locations are, of course, possible.

A huge number of possibilities to construct localizations functions have been
proposed in the computer vision literature, either static model-based techniques,
such as matched filters [5] and motion templates [6], or systems that learn from
training examples, e.g . local classifiers [7, 8], voting procedures [9], mean-shift
tracking [10], non-linear filters [11], and probabilistic random field models [12].
Most of these techniques are not applicable to our situation, because they are
either not fast enough or do not achieve single pixel prediction accuracy. In this
work, we build on structured regression (SR) [13], a flexible technique that treats
Equation (1) as a (multidimensional) regression problem. Structured regression
was originally introduced for performing object category localization with bag of
visual words representations, thereby achieving strong invariance against within-
class variation, but providing low spatial detection accuracy. In this work, we
show how to adapt SR to the specifics of our problem, where accurate localization
is crucial, because otherwise the subsequent stereo reconstruction breaks down.
At the same time, we are able to work with a simpler object representation,
because we only target the detection of specific objects, not of semantic object
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classes. Variations in appearance therefore do not occur arbitrarily, but mainly
due to varying illumination, a non-static background and partial occlusions.

In the following Section 2, we will recapitulate the concepts behind structured
regression and explain our specific design choices. In Section 3, we introduce
an improved training method based on active learning. Section 4 contains the
experimental evaluation, where we show how active learning improves over other
methods for efficient training, and Section 5 contains a summary of the paper
and directions for future work .

2 Object Localization by Structured Regression

Structured regression in its general form consists of using a structured support
vector machine (S-SVM) [14] to learn a kernelized linear compatibility function

F (x, y) = 〈w,Φ(x, y)〉H, (2)

where Φ : X ×Y → H is a joint feature function from X into a Hilbert space H
that is implicitly given by a joint kernel function k : (X × Y) × (X × Y) → H.
From F one obtains a regression function by maximization over the output space

f(x) = argmaxy∈Y F (x, y). (3)

For a fixed choice of kernel k, the function f is completely determined by the
weight vector w∈H that is obtained by solving an optimization problem [15]:

min
w∈H, ξ1,...,ξn∈R+

1
2
‖w‖2 +

C

n

∑n

i=1
ξi (4)

subject to weighted margin constraints1 for i = 1, . . . , n:

∀y ∈ Y \ {yi} : 〈w,Φ(xi, yi)〉H−〈w,Φ(xi, y)〉H,≥ 1− 1
∆(yi, y)

ξi, (5)

where C > 0 is a regularization parameter and (x1, y1), . . . , (xn, yn) are training
examples, i.e. images xi with manually annotated correct object location yi.

Remembering that 〈w,Φ(x, y)〉H is equal to the compatibility function F (x, y),
one sees that the optimization (4) is a maximum margin procedure: for each
training image xi, we would like to achieve a margin of 1 between the compati-
bility of the correct prediction yi to the compatibility of any other possible (and
thereby suboptimal) prediction, i.e. F (xi, yi) − F (xi, y) ≥ 1 for y ∈ Y \ {yi}.
The constraint set (5) expresses this fact, with two additions: each training im-
age gets a slack variable ξi, because it might not be possible to fulfill all margin
constraints simultaneously, and a weight function ∆(yi, y) is introduced that
reweights the slack variables to reflect the fact that in a regression setup some
“wrong” predictions are less bad than others, and therefore not all slack variables
should be penalized equally strong. ∆ is also called the loss function, because it
it proportional to the loss one has to pay in the objective function (4) when not
achieving a sufficient margin for any of the training examples.
1 In contrast to [13], we use the slack rescaling formulation of the S-SVM, which is gen-

erally considered more robust than the computationally easier margin rescaling [14].
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2.1 S-SVM Training by Delayed Constraint Generation

The S-SVM training step is a convex optimization problem. Therefore, one can
aim for finding the globally optimal solution vector without the risk of converg-
ing only to a local minimum. However, generic optimization packages do not
handle the optimization well, because the number of constraints is extremely
high: for each training instance, there are as many constraints as there possible
object locations in the image. In order to derive a specialized solution proce-
dure, Joachims [15] observed that only very few of the constraint will be active
at the optimal solution, which allows the use of a delayed constraint generation
technique. One iterates between solving (4) for a subset of constraints, which
is nearly the same quadratic program (QP) as solving an ordinary SVM, and a
verification step that checks if the resulting solution violates any element of the
full constraint set (5). If it does not, one has found the globally optimal vector w.
Otherwise, one adds one or several violated constraints to the constraint subset
and restarts to the iteration2. Theoretic results guarantee only polynomial time
convergence [14] of this procedure, but practical experience shows that typically
only few iteration are required until the optimal solution is found, see e.g . [17].

In many applications, including structured regression, the time critical part of
the S-SVM training procedure is not the QP solution, but the check for violated
constraints. This step requires answering the following argmax problem

i∗, y∗ = argmax
i∈{1,...,n},y∈Y\{yi}

∆(y, yi) ( 1 + 〈w,Φ(xi, y)〉 − 〈w,Φ(xi, yi)〉 ) . (6)

Because w is kept fixed in this expression, 〈w,Φ(xi, yi)〉 is constant, and the max-
imization is nearly the same as Equation (3), except for an additional weighting
by the loss function. Being able to solve (6) quickly is a crucial prerequisite to
building an efficient S-SVM training procedure.

2.2 Fast Object Localization

S-SVM based structured regression can be adapted to localization problems of
very different nature by choosing a suitable joint kernel function k and loss
function ∆. For our system, the main requirements are high spatial accuracy,
because the triangulation of 3D positions would otherwise fail, and high speed at
test time, because the robotic system needs to operate in 100 Hz real-time. Our
choice of ∆ and k reflects this: we use the robust quadratic loss

∆(y, y′) = min(
1
σ2
‖y − y′‖2L2 , 1) (7)

2 In a computer vision context, the iterated algorithm is similar to bootstrapping meth-
ods for training object detection systems. These iteratively improve a detection func-
tion by searching for false positive detections and adding them as negative training
examples [16]. S-SVM differs from this as it requires no non-maximum suppression,
because the loss function allows arbitrary regions to be included instead of only false
positives, and no early stopping, because the margin conditions prevent overfitting.
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where y encodes the object center in pixel coordinates and σ is a tolerance
parameter that we set to one third of the expected radius of the object. The
locally quadratic part enforces high spatial accuracy, whereas the cutoff reflects
that all predictions too far from the correct one are equally wrong, thereby
making the measure robust to outliers.

Because the kernel enters the compatibility function (2), which is evaluated
repeatedly at test time, we cannot afford expensive feature extraction steps like
previous applications of S-SVMs to computer vision problems (e.g . [13, 18, 19]).
Instead, we resort to an explicit kernel function

k
(

(x, y) , (x′, y′)
)

=
∑

(u,v)∈W
φ
(
x, y + (u, v)

)t
φ
(
x′, y′ + (u, v)

)
(8)

based on a per-pixel feature map φ : X × Y → Rk where W is a fixed shape
region, e.g . a square, centered at relative coordinate (0, 0), such that y + (u, v)
runs over all positions of W translated to the center point y. φ(x, y) can be
vector valued with simplest choice φ(x, y) = (xRy , x

G
y , x

B
y ), where xRy , x

G
y , x

B
y are

the values of the red, green and blue channel of the pixel at position y in the
image x. One can easily imagine more powerful representations, e.g . working in
other color spaces, or using non-linear operations like gamma correction.

The reason we choose the kernel k based on a per-pixel feature map is that
it allows efficient inference, because it turns the operation of w in Equation (2)
into a linear shift-invariant (LSI) filter [20] on x. We write k in Equation (8) as
a linear kernel k( (x, y) , (x′, y′) ) = Φ(x, y)tΦ(x′, y′) with explicit feature map

Φ(x, y) =
(
φ
(
x, y + (u1, v1)

)
, . . . , φ

(
x, y + (us, vs)

))
(9)

for W = {(u1, v1), . . . , (us, vs)}, such that H = RK for K = sk. Decomposing
w into per-pixel contributions w = (w(u1,v1), . . . , w(us,vs)) in the same way as Φ,
we can rewrite the compatibility function as

F (x, y) = 〈w,Φ(x, y)〉 =
∑k

c=1

∑s

i=1
wc(ui,vi)

φc
(
x, y + (ui, vi)

)
(10)

where the index c denotes the vector components of φ. Writing ŵc for the mir-
rored and padded pattern of wc, i.e. ŵc(xi,yi)

= wc(−xi,−yi)
where defined, and

ŵc(xi,yi)
= 0 elsewhere, we can write the inner sum as a 2D convolution

=
∑k

c=1
[ŵc ∗ φc(x)](y) (11)

where φc(x) denotes the c-th channels of the per-pixel feature representation
of the whole image x. Now each summand in Equation (11) can be calculated
efficiently even for large regions W using the convolution theorem [20]. Denoting
the Fourier transform by F , we obtain

= F−1
(∑k

c=1
Fŵc �Fφc(x)

)
[y] (12)
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where � is the point-wise complex multiplication in Fourier space, and we were
able to exchange the order of F−1 and the summation, because both are linear
operations. The result is a score map of the same size as x, in which we can
identify the argmax by a single scan through the elements.

The same trick allows us to speed up the training procedure, where we have
to repeatedly solve Equation (6). After calculating the scalar product by the
convolution theorem, multiplying with the loss function is just a point-wise op-
eration, and we identify the argmax by scanning the array.

2.3 Implementation with GPU support

We implement the described S-SVM training procedure using the Python in-
terface of SVMstruct3. Since training takes only seconds or few minutes, it is
currently not a computational bottleneck for our object tracking system. Test
time speed, however, is the crucial quantity we need to optimize for, because we
have only milliseconds to evaluate the detection function (3) in a 100 Hz object
detection system. We meet these requirement by calculating the Fourier trans-
form on the GPU using the CUDA framework4. Using the FFT implementation
provided by the CUDA SDK, the convolutions in (11) require less than 3ms to
compute on an NVIDIA GeForce GTX 280 graphics card.

3 Training with Active Learning

Structured regression provides us with a method to train an object detection
system from a set of given training examples. However, because the training
labels for high accuracy object localization need to be very accurate, ideally to
the pixel level, creating training examples is a tedious task, and we would like
to get away with as few labeled examples as possible.

To achieve this, we propose an active learning method, i.e. a setup in which
the detector itself “decides” which images it would like to have labeled. While
active learning is a well-established technique in the area of binary and multiclass
classification [21], for the problem of structured prediction only perceptron-like
classifiers have so far been studied in an active learning context [22]. This is
despite the fact that because of its inherent sparsity, the S-SVM’s is much better
suited to this idea than the perceptron: due to the maximum-margin framework
the optimal S-SVM solution vector will not depend on all training samples, but
only on a subset of support vectors, which in our case are pairs of the training
images xi with correct or incorrect labels y ∈ Y. The set of support vectors is
typically much smaller than the number of training instances, and particularly
so for very redundant data sources like high framerate video streams. Therefore,
it makes sense not to label all images of a sequence, but only some relevant ones.
If we dropped only images that are not support vectors, we would still obtain
exactly the optimal S-SVM solution. Unfortunately, the support vector are a
priori unknown, so in practice, heuristics subsampling methods are used, e.g .
labelling only every k-th frame, or labelling a random subset.
3 http://svmlight.joachims.org/svm struct.html
4 http://www.nvidia.com/object/cuda home.html
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Require: image sequence x1, . . . , xn

S ← ∅
repeat
w ← S-SVM trained with S
for t = 1, . . . , n do
ỹt ← argmaxy∈Y〈w,Φ(xt, y)〉
if outlier(ỹt)∧(xt, .) 6∈ S then

ask for label yt

S ← S ∪ {(xt, yt)}
break from loop over t

end if
end for

until no outlier was detected.

Fig. 1. Active S-SVM Training

In this work, we instead propose the
active learning setup illustrated in Algo-
rithm 1. It can be seen as a generaliza-
tion of the delayed constraint generation
procedure [15]. Instead of only iteratively
adding training regions for each image,
we iteratively add the images themselves.
For each working set of training exam-
ples, we train the S-SVM, and then se-
quentially classifying all available train-
ing images, including the unlabeled ones,
until an outlier criterion is raised. If no
outliers are found, the procedure termi-
nates. Otherwise, we ask the user to label
the first outlier image, add it to the train-
ing set and re-iterate until convergence. Note that w is always a valid weight
vector for object detection, so we also could interrupt the procedure at any time,
e.g . after a fixed number of training examples.

Fig. 2. Example frames from the image sequences with varying lighting conditions and
players. The task is to detect the table tennis ball (enlarged in top right excerpts) that
is of known size and color, but undergoes appearance changes due to non-homogeneous
illumination conditions and occlusions.

The concept of an outlier serves as a proxy for a mistake, that would be the
ideal criterion whether to include an image into the training set. However, to
decide whether a predicted label differs from the correct label, we would require
all images to be labeled, which is exactly what we want to avoid. A predicate
outlier, in contrast, we can define by looking only at object detection in previous
frames, using either a physical motion model, or a simper criterion like the
distance between subsequent detections. Since in our practical experiments, all
outlier criteria tested coincided almost perfectly with a true mistakes criterion,
we settled for the simplest setup, declaring a prediction an outlier if its distance
to the previous prediction is more than 4 object radii.

4 Experimental Evaluation

We show the performance of the proposed active learning setup on a realistic
high-speed object detection task. With a static Prosilica GE640C Gigabit Ether-
net camera, we captured sequences of people playing table tennis at a resolution
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of 640 × 480 with 100 frames per second. Figure 2 shows example images from
four different test sequences. The task consists of robustly detecting the position
of the ball in each frame, for which we use a 33× 33 rectangular region W .

From an pure object detection point of view, this task can be considered rela-
tively easy, as the table tennis ball is a homogeneously textured spherical object
of known color and size. However, there are numerous practical complications
because we have to work in a human inhabited environments that we cannot fully
control: different distractors may enter the image, e.g . due to peoples’ different
clothing. The image background can partly change due to people or objects en-
tering and leaving the field of view. Additionally, a large window front causes
strong variation in the lighting conditions that are non-homogeneous within the
room and over time. Overall, classical non-adaptive method for blob detection,
in particular difference of Gaussians (DoG) filters, have proven unreliable under
these conditions, as can also be seen from the subsequent experiments.

Fig. 3. First 10 training examples from
uniform (top), and random (center) and
active learning (bottom) selection. Ac-
tive learning chooses more difficult, and
thereby informative, training examples.

Besides the DoG filter, we com-
pare the proposed active learning
setup with two frequently used base-
line methods for creating reduced
training sets: uniform subsampling
(H) and random subsampling (R). For
all methods, we measure the detec-
tion accuracy on four video sequences
consisting of 452, 505, 405 and 268
frames. For the trained methods, all
frames not used as training samples
are used for testing.

Figure 4 visualizes the detection performance of the three learning methods
and the best performing different of Gaussian filter for the four sequence of
Figure 2. As one can see, all trained method are able to learn a detector that is
better than a predefined DoG filter, even when given only few training examples.
We explain this by the fact that the appearance of the table tennis ball in the
sequences we use is not rotationally symmetric due to asymmetric illumination
conditions, and it is therefore not well modeled by Gaussian model. The plots
also show that the active methods of example selection consistently requires
fewer training examples to reach an acceptable level of accuracy than the other
methods. Table 1 shows that one reason for this is that it produces much fewer
strong outliers. The reason for this can be seen from Figure 3, which shows
examples of the training sets resulting from the different selection strategies.
Because the baseline methods select their training example regardless of their
difficulty, they require labels for samples that are “easy” and unlikely to become
support vectors anyway. Active learning adds mainly difficult example to the
training set (e.g . the orange ball in front of varying amounts of skin color).
Thus, the labels it requests are more likely to influence the decision function.
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Fig. 4. Detection accuracy (L2 distance between prediction and ground truth) against
the number of training samples used. Each figure corresponds to one test sequences,
and each data points depicts the mean and standard error over 10 runs with different
start states.

sequence best DoG random uniform active training

1 0.24 0.15 / 0.10 / 0.02 0.12 / 0.11 / 0.02 0.08 / 0.02 / 0.01

2 0.84 0.26 / 0.19 / 0.08 0.28 / 0.15 / 0.07 0.21 / 0.15 / 0.02

3 0.11 0.08 / 0.06 / 0.02 0.07 / 0.05 / 0.04 0.05 / 0.01 / 0.01

4 0.53 0.07 / 0.06 / 0.03 0.13 / 0.08 / 0.03 0.13 / 0.01 / 0.01

Table 1. Fraction of outliers (defined by ∆(yi, y
pred
i ) = 1) for the different detection

methods at 5 / 10 / 50 training examples.

5 Summary and Future Work

We have presented a learning framework for efficient object detection. Using a
structured regression setup, we showed how to construct the kernel function in
a way that allows evaluation on the GPU, thereby achieving detection speed of
more than 100 frames per second, where previous S-SVM based methods requires
seconds or even minutes per test image [13, 18, 19]. We also extended the usual
structured SVM training procedure to an active learning setup. By this we were
able to also strongly reduce the number of labeled training examples necessary.

A strong advantage of the proposed systems is its flexibility. While we applied
it in a relative straight-forward setting, working directly with the images’ RGB
components, other explicit per-pixel feature are easily integrated to yield more
powerful classifiers. This includes elementary operations like gamma correction
or color space transforms, but also non-linear features like locally binary pattern.
Using temporal differences, one can incorporate background subtraction.

An interesting step in this direction that would also further increase the speed
would be the use of the cameras’ raw Bayer pattern as input features. A further
direction of study would be the question if we can develop other kernel functions
besides convolution-based ones that allow fast GPU-based evaluation.
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